
1 

 

Discovery of common Asian copy number variants using integrated 

high-resolution array CGH and massively parallel DNA sequencing 

 

Hansoo Park, Jong-Il Kim, Young Seok Ju, Omer Gokcumen, Ryan E. Mills, Sheehyun Kim, 

Seungbok Lee, Dongwhan Suh ,Dongwan Hong, Hyunseok Peter Kang, Yun Joo Yoo, Jong-

Yeon Shin, Hyun-Jin Kim, Maryam Yavartanoo, Young Wha Chang, Jung-Sook Ha, Wilson 

Chong, Ga-Ram Hwang, Katayoon Darvishi, HyeRan Kim, Song Ju Yang, Kap-Seok Yang, 

Hyungtae Kim, Matthew E. Hurles, Stephen W. Scherer, Nigel P. Carter, Chris Tyler-Smith, 

Charles Lee & Jeong-Sun Seo 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nature Genetics: doi:10.1038/ng.555



2 

 

Supplementary Materials 

 

A. Suppl. Table 1: Filtering set training for aCGH with AK1 genome sequence data….4 

B. Suppl. Table 2: Final filter conditions for CNV calling……………………….…………6 

C. Suppl. Table 3: Absolute CNVs of 30 Asians……………………………………………7 

- SuppTable3_Absolute_CNVS_20099.xls 

D. Suppl. Table 4: Summary of statistics for absolute CNVs in the 30 Asians studied...8 

E. Suppl. Table 5: List of primers for qPCR and breakpoint sequencing experiments 

a. Quantitative PCR………………………………………………………...9 

- SuppTable5_qPCR_primers_revision.xls 

b. Breakpoint PCR and sequencing…………………………………….10 

F. Suppl. Table 6: Summary of qPCR and breakpoint sequencing validation studies. 

a. Quantitative PCR……………………………………………………….11 

b. Breakpoint PCR and sequencing…………………………………….12 

G. Suppl. Table 7: List of 5,177 CNVE identified in the 30 Asians studied……..……….13 

-  SuppTable7_5177CNVE_EthnicComparison.xls 

H. Suppl. Table 8: List of OMIM genes in identified CNVs………………………..………14 

- SuppTable8_1843_OMIMgene.xls 

I. Suppl. Table 9: List of microRNAs overlapping the personal CNVs identified in the 

study………………………………………………………………………………………...15 

- SuppTable9_miRNA.xls 

J. Suppl. Table 10 : List of fusion gene overlapping the personal CNVs identified in this 

study..........................................................................................................................16 

- SuppTable10_fusion_gene_list.xls 

K. Suppl. Table 11 : Modified PANTHER ontology analysis……………………………..17 

- SuppTable11_GeneOntology.xls 

L. Suppl. Table 12 : Examples of genes showing different copy number status between 

Nature Genetics: doi:10.1038/ng.555



3 

 

this study and Conrad et al……………………………………………………………….18  

M. Suppl. Figure 1. Content of repetitive sequence for the Agilent 24M array set and the 

NimbleGen 42M array set……………………………………...………………………....19 

N. Suppl. Figure 2. Modified ROC curve for filter training using data for AK1……….....20 

O. Suppl. Figure 3. Read-depth information for 721 validated CNVs in AK1 using data 

for AK1 and NA10851 …………………………………………………………………….21 

- SuppFig3_ReadDepth.pdf  

P. Suppl. Figure 4. Application of the absolute CNV calling algorithm and confirmation 

of results using read-depth sequence information……………………………………..22 

Q. Suppl. Figure 5. Copy number loss is the predominant type of human copy number 

variation……………………..…………………………………………………………..…..32 

R. Suppl. Figure 6. Definition of CNVs, CNVR, and CNVE………………………......…..33 

S. Suppl. Figure7. A Comparison between the Agilent 24M array platform and the 

NimbleGen 42M array platform using genomic DNA from AK1……………………....34 

T. Suppl. Figure 8. Mendelian inconsistency of CNVs in a large Mongolian family using 

180k probe aCGH array ………………………………………………………………….35 

U. Suppl. Figure 9. Comparison of CNV calls made with the Agilent 24M aCGH platform 

and data from a 105k CNV genotyping platform by GSVC………………………..….36 

V. Suppl. Figure 10.  The hierarchical selection of CNVRs which were included on the 

180k probe aCGH array……………………………………………….………………...37 

W. Suppl. Figure 11.  The distribution of probes within the targeted CNVRs in 180k 

probe aCGH array.…………………………………………………………………..…...38 

X. Suppl. Note…………………………………………………………………………..……39 

Y. References………………………………………………………………………………...48 

 

 

Nature Genetics: doi:10.1038/ng.555



4 

 

A. Suppl. Table1. Filtering set training for aCGH with AK1 genome sequence data. 
 

Filter ID 

Filtering Condition 
Optimization Score 

CNV < 5000bp CNV >= 5000bp 

(1) 
minimum 
log2 ratio 

for low 
CNV 

(2) 
minimum 
log2 ratio 
for middle 

CNV 

(3) 
minimum 
log2 ratio 
for high 

CNV 

threshold 
p-value 

(1) 

threshold 
p-value 

(2) 

threshold 
p-value 

(3) 

(4) 
minimum 
log2 ratio 

for low 
CNV 

(5) 
minimum 
log2 ratio 
for middle 

CNV 

(6) 
minimum 
log2 ratio 
for high 

CNV 

threshold 
p-value 

(4) 

threshold 
p-value 

(5) 

threshold 
p-value 
(6) 

relative 
sensitivity 

PPV
a
 sum of the 

two 

final 
optimized 

filter 

0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 

1.00E-08 0.845  0.840  1.685  

filter1 0.2 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.860  0.793  1.653  

filter2 0.25 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.857  0.805  1.662  

filter3 0.3 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.852  0.824  1.676  

filter4 0.4 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.832  0.850  1.682  

filter5 0.45 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.825  0.855  1.680  

filter6 0.5 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.820  0.860  1.680  

filter7 0.35 0.50 0.70 1.00E-19 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.845  0.833  1.678  

filter8 0.35 0.50 0.70 1.00E-17 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.849  0.814  1.663  

filter9 0.35 0.50 0.70 1.00E-15 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.849  0.814  1.663  

filter10 0.35 0.50 0.70 1.00E-23 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.838  0.847  1.685  

filter11 0.35 0.50 0.70 1.00E-25 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.835  0.854  1.689  

filter12 0.35 0.50 0.70 1.00E-27 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.829  0.856  1.685  

filter13 0.35 0.50 0.70 1.00E-21 1.00E-12 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.854  0.797  1.651  

filter14 0.35 0.50 0.70 1.00E-21 1.00E-10 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.872  0.721  1.594  

filter15 0.35 0.50 0.70 1.00E-21 1.00E-08 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.920  0.578  1.497  

filter16 0.35 0.50 0.70 1.00E-21 1.00E-16 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.820  0.860  1.680  

filter17 0.35 0.50 0.70 1.00E-21 1.00E-18 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.811  0.872  1.683  

filter18 0.35 0.50 0.70 1.00E-21 1.00E-20 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.804  0.876  1.681  

filter19 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-07 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.852  0.834  1.686  

PPV
a ,Positive predictive value
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A. Suppl. Table1. Filtering set training for aCGH with AK1 genome sequence data (continued). 
 

Filter ID 

Filtering Condition 
Optimization Score 

CNV < 5000bp CNV >= 5000bp 

(1) 
minimum 
log2 ratio 

for low 
CNV 

(2) 
minimum 
log2 ratio 
for middle 

CNV 

(3) 
minimum 
log2 ratio 
for high 

CNV 

threshold 
p-value 

(1) 

threshold 
p-value 

(2) 

threshold 
p-value 

(3) 

(4) 
minimum 
log2 ratio 

for low 
CNV 

(5) 
minimum 
log2 ratio 
for middle 

CNV 

(6) 
minimum 
log2 ratio 
for high 

CNV 

threshold 
p-value 

(4) 

threshold 
p-value 

(5) 

threshold 
p-value 
(6) 

relative 
sensitivity 

PPV sum of the 
two 

final 
optimized 

filter 

0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 

1.00E-08 0.845  0.840  1.685  

filter20 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-10 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.840  0.848  1.688  

filter21 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-12 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.836  0.859  1.695  

filter22 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-14 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.829  0.863  1.692  

filter23 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.2 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.857  0.790  1.647  

filter24 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.25 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.852  0.829  1.680  

filter25 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.35 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.840  0.843  1.683  

filter26 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.4 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.831  0.841  1.672  

filter27 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.45 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.820  0.841  1.660  

filter28 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.5 0.5 0.7 1.00E-21 1.00E-08 1.00E-08 0.802  0.838  1.639  

filter29 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-19 1.00E-08 1.00E-08 0.847  0.837  1.684  

filter30 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-17 1.00E-08 1.00E-08 0.850  0.833  1.683  

filter31 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-15 1.00E-08 1.00E-08 0.850  0.833  1.683  

filter32 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-23 1.00E-08 1.00E-08 0.840  0.840  1.681  

filter33 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-25 1.00E-08 1.00E-08 0.839  0.840  1.679  

filter34 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-27 1.00E-08 1.00E-08 0.838  0.840  1.678  

filter35 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-07 1.00E-08 0.846  0.833  1.679  

filter36 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-10 1.00E-08 0.843  0.844  1.688  

filter37 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-14 1.00E-08 0.842  0.849  1.691  

filter38 0.35 0.50 0.70 1.00E-21 1.00E-14 1.00E-08 0.3 0.5 0.7 1.00E-21 1.00E-08 1.00E-07 0.846  0.840  1.686  

Nature Genetics: doi:10.1038/ng.555



6 

 

B. Suppl. Table 2. Final filter conditions for CNV calling. 

.  

a. Optimized filter conditions of CNV calls for AK1 

Criteria Subset p-value TP
a
 FP

b
 PPV 

relative 
sensitivity 

overall 
PPV 

overall 
relative 

sensitivity 

Length <5000bp, 
minimum llog2 ratiol 

≥0.35 

0.5>|log2 ratio| ≥0.35 <=E-21 18 20 0.474  0.462  

0.840  0.845 

0.7>|log2 ratio| ≥0.5 <=E-14 83 42 0.664  0.546  

|log2 ratio| ≥0.7 <=E-8 322 35 0.902  0.985  

Length ≥ 5000bp, 

minimum llog2 ratiol 
≥0.30  

0.5>|log2 ratio| ≥0.3 <=E-21 31 4 0.886  0.674  

0.7>|log2 ratio| ≥0.5 <=E-8 61 13 0.824  0.984  

|log2 ratio| ≥0.7 <=E-8 94 2 0.979  0.989  

TP
a
, True Positive; FP

b 
; False Positive 

b. Validation of filter conditions of CNV calls for AK2 

Criteria Subset p-value TP FP PPV overall PPV 

Length <5000bp, 
minimum llog2 ratiol 

≥0.35 

0.5>|log2 ratio| ≥0.35 <=E-21 13 4 0.765  

0.855 

0.7>|log2 ratio| ≥0.5 <=E-14 54 19 0.740  

|log2 ratio| ≥0.7 <=E-8 326 56 0.853  

Length ≥5000bp, 

minimum llog2 ratiol 

≥0.30  

0.5>|log2 ratio| ≥0.3 <=E-21 23 7 0.767  

0.7>|log2 ratio| ≥0.5 <=E-8 42 7 0.857  

|log2 ratio| ≥0.7 <=E-8 109 3 0.973  
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C. Suppl. Table 3. Absolute CNVs of 30 Asians  

 

 See SuppTable3_Absolute_CNVS_20099.xls 

Depicted below is a preview for the part of this file. 
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Supplementary Table 4. Summary of statistics for absolute CNVs in the 30 Asians studied 

Sample 
Id 

Origin 

CN Gain  CN Loss 

# of 
Segments 

Length 
(Mb) 

# of 
genes 

Examples of clinically important genes  
# of 

Segments 
Length 
(Mb) 

# of 
genes 

Examples of clinically important genes 

NA18592 CHB 154 4.86  101 CLPS,DMBT1,IRF4,LPA,NBAS  482 5.04  227 ADAMTS14,DAZL,GSTT2,MCTP2,PGA3,4,5 

NA18547 CHB 181 5.15  134 IRF4,LPA,PIK3CA,PRKRA,TPPP  475 4.85  203 ADAMTS14,DAZL,MCTP2,PGA3,4,5 

NA18526 CHB 205 4.41  181 IRS2,LPA,PIK3CA  472 6.03  216 ADAMTS14,DMBT1,LY9,MCTP2,PGA3,4,5,RHD 

NA18570 CHB 172 3.69  118 CEL,CLPS,IRF4,LPA,PRKRA  457 4.94  214 ADAMTS14,GHR,GSTT2,LY9,PGA3,4,5 

NA18566 CHB 124 3.64  80 CES1,LPA,MUC20,PIK3CA  481 5.50  221 ADAMTS14,CFH,DAZL,DMBT1,GHR,MGAM,PGA3,4,5,PRSS2 

NA18542 CHB 260 8.05  291 ADAMTS14,CLPS,EBF3,FOXC1,HYLS1,IRS2,PRKRA,TPPP  545 5.55  211 MGAM,PGA3,4,5 

NA18537 CHB 117 3.27  84 CES1,CLPS,LPA,PIK3CA,PRKRA  480 4.03  204 ADAMTS14,CFH,DAZL,LY9,MCTP2,PGA3,4,5 

NA18564 CHB 135 4.62 124 CES1,NBAS,PRKRA,SKI  477 4.10 193 
ADAMTS14,DAZL,DMBT1,GSTT2,LY9,MCTP2,MGAM,NAIP,PG
A3,4,5 

NA18552 CHB 155 4.36  101 CEL,CLPS,DMBT1,IRS2,LPA,NAIP,PIK3CA,PRKRA  455 6.12  210 ADAMTS14,CFH,DAZL,MGAM,PGA3,4,5,RHD 

NA18582 CHB 170 5.75  142 LPA,NBEA,PRKRA,TPPP  467 4.87  220 ADAMTS14,CFH,DAZL,GHR,MCTP2,MGAM,PGA3,4,5 

           

NA18947 JPT 165 4.25  113 CEL,LPA,MGAM,PIK3CA,TPPP  488 5.58  240 ADAMTS14,CNR2,DAZL,MCTP2,MGAM,NBEA,PGA3,4,5 

NA18972 JPT 277 5.12  272 IRX1,LPA,MUC20,MUC4,NAIP,PRKRA,TPPP  473 5.69  223 ADAMTS14,CNR2,DAZL,MCTP2,PGA3,4,5 

NA18942 JPT 114 3.99 83 CES1,IRF4,LPA,NBEA,PIK3CA,PRKRA  598 10.36 424 
ADAMTS14,CFH,DAZL,DMBT1,EBF3,IRS2,MCTP2,MUC20,MU
C4,PGA3,4,5,TPPP 

NA18949 JPT 176 5.16  145 CES1,EBF3,FOXC1,LPA,PRKRA,SKI  464 5.68  218 ADAMTS14,DAZL,MGAM,PGA3,4,5 

NA18951 JPT 139 3.65  83 IRF4,KRT34,NBAS,PRKRA,SKI  450 4.09  170 ADAMTS14,CNR2,DAZL,DMBT1,LY9,MGAM,PGA3,4,5 

NA18973 JPT 278 14.60  387 ADAMTS14,CEL,CES1,EBF3,HYLS1,IRS2,LPA,PITX1,TPPP  504 6.93  200 DAZL,MGAM,PGA3,4,5 

NA18969 JPT 345 13.70  466 ADAMTS14,EBF3,HYLS1,NBAS,SKI  553 9.54  226 ADAMTS14,DAZL,LY9,MCTP2,MGAM,PGA3,4,5 

NA18968 JPT 216 12.80 343 
CES1,CLPS,DMBT1,EBF3,HYLS1,IRF4,IRS2,IRX1,NBEA,PIK
3CA,PITX1 

 454 4.08 168 DAZL,NAIP,PGA3,4,5 

NA18997 JPT 201 5.10  197 CCL4,MCTP2,MUC20,MUC4,PRKRA  542 4.37  223 ADAMTS14,CFH,DAZL,MGAM 

NA18999 JPT 170 4.25  119 CCL4,CES1,FOXC1,LPA,PRKRA  504 4.47  207 ADAMTS14,DAZL,MCTP2,MGAM,PGA3,4,5,PIK3CA 

           

AK2 KRS 134 3.66  94 DMBT1,LPA,NAIP  480 6.16  230 ADAMTS14,CNR2,DAZL,MCTP2,PGA3,4,5 

AK4 KRS 252 4.28  120 IRF4,KRT34,LPA,MGAM,PRKRA  460 5.64  225 ADAMTS14,CEL,DAZL,MCTP2,PGA3,4,5,PRKRA 

AK6 KRS 245 6.83 273 
CEL,CLPS,EBF3,FOXC1,IRS2,IRX1,LPA,NBAS,PIK3CA,PITX
1,PRKRA,SKI,TPPP 

 469 5.00 200 ADAMTS14,CNR2,DAZL,DMBT1,PGA3,4,5 

AK8 KRS 154 4.55  98 CCL4,IRF4,LPA,NBAS,PRKRA,TPPP  469 5.63  212 ADAMTS14,DAZL,DMBT1,PGA3,4,5,PRSS2 

AK10 KRS 194 6.22  204 DMBT1,FOXC1,IRF4,IRS2,IRX1,LPA,PITX1  455 5.39  199 ADAMTS14,DAZL,MCTP2,MUC20,PGA3,4,5 

AK12 KRS 139 4.22  98 CEL,CLPS,EBF3,FOXC1,IRS2,IRX1,LPA,SKI,TPPP  457 5.99  206 ADAMTS14,DAZL,MCTP2,MUC20,PGA3,4,5 

AK14 KRS 176 4.58 151 
CCL4,CES1,CLPS,DMBT1,LPA,MUC20,MUC4,PRKRA,RHD,
TPPP 

 454 5.08 204 ADAMTS14,DAZL,GHR,GSTT2,MCTP2,MGAM,PGA3,4,5 

AK16 KRS 129 3.04  92 IRF4,KRT34,LPA,MUC20,MUC4,PITX1,PRKRA,TPPP  461 6.07  219 ADAMTS14,DAZL,RHD 

AK18 KRS 161 5.30  108 CES1,CLPS,EBF3,LPA,PRKRA,RHD  467 5.82  217 ADAMTS14,DAZL,DMBT1,GHR,MCTP2,PGA3,4,5,PIK3CA 

AK20 KRS 164 3.39  97 IRF4,LPA,PIK3CA,PRKRA  604 10.22  433 ADAMTS14,DAZL,DMBT1,PGA3,4,5,PRSS2 

 
ADAMTS14, ADAM metallopeptidase with thrombospondin type 1 motif, 1; CCL4, chemokine (C-C motif) ligand 3; CEL, carboxyl ester lipase (bile salt-stimulated lipase); CES1, carboxylesterase 1 (monocyte/macrophage 
serine esterase 1); CFH , complement factor H; CLPS, colipase, pancreatic; CNR2, cannabinoid receptor 2 (macrophage) =CB2; DAZL, deleted in azospermia-like; DMBT1, deleted in malignant brain tumors 1; EBF3, early B-
cell factor 3; FOXC1, forkhead box C1; GMDS GDP-mannose 4,6-dehydratase; GHR, growth hormone receptor; GSTT2, DDT D-dopachrome tautomerase; glutathione S-transferase theta 2; HYLS1, hydrolethalus syndrome 1; 
IRF4, interferon regulatory factor 4; IRS2, insulin receptor substrate 2; IRX1, iroquois homeobox 1; KRT34, keratin 34; LPA, lipoprotein, Lp(a); LY9, lymphocyte antigen 9; MCTP2, multiple C2 domains, transmembrane 2; 
MGAM, maltase-glucoamylase (alpha-glucosidase); MUC4, mucin 4; MUC20, mucin 20, cell surface associated; NAIP, NLR family, apoptosis inhibitory protein; NBAS, neuroblastoma amplified sequence; NBEA, 
neurobeachin; PGA3,PGA4,PGA5, pepsinogen 3,4,5; PIK3CA, PIK3CA phosphoinositide-3-kinase, catalytic, alpha polypeptide; PITX1, paired-like homeodomain 1; PRKRA, protein kinase, interferon-inducible double stranded 
RNA dependent activator; PRSS2, protease, serine, 2 (trypsin 2); RHD, RhD; SKI, v-ski sarcoma viral oncogene homolog (avian); TPPP, tubulin polymerization promoting protein 
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E. Suppl. Table 5. List of primers for qPCR and breakpoint sequencing experiments 

(a) Quantitative PCR 

See SuppTable5_qPCR_primers_revision.xls 

 

Depicted below is a preview for the part of this file. 
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E. Suppl. Table 5. List of primers for qPCR and breakpoint sequencing 

experiments  

(b) Breakpoint PCR and sequencing 

Index Forward primer Reverse primer 

1 TCACCAGCTCCTAAAATCCAAT CTTTTCACACAGTTGCTTGGAG 

2 TCCTTTCAATCACTTTGAGCTG TCTCTTGATCCTCTTGCTCCTC 

3 CTCCTCTCCTAACCCTGGAAGT TGGAATAAGGTCCCAATAGGAG 

4 GAGACAGCACAAAACAACAAGC AGCTTGCTGCCTTTAGTCAAAC 

5 CTGGAAGCAATTAAGCCACTCT TGCCTCTATAAGTTTGTGTGACG 

6 AAAGAGTGGTTTTAGCCTTTGC TCCTTTTTAAGCGCTAGGTCAG 

7 AACCTTTTGGTGGCTATTGAGA TAGCAAGGATTCAAGACCCTGT 

8 ACATGCCTTCCAGGCTATAGTG ACCAATGTTGAAATGTCACAGG 

9 TTTACCTTGAGGCCACTGAAAT TTCTGACTCAGCATTTCTGCAT 

10 GCTGATGACTGTCCCTTTATCC CAGTTTCACCATTTCTTACAGCAG 

11 GTCAGCACCAAATCTTCTTAGAAAC GAATGCCAATGTAACAGAATGG 

12 CAGTCACCAACCAGATGAAAGA TCAGAGAAAGCATGACTCAGGA 

13 GTTGACTTGAGACCATTGTGGA AACAGTGTCCAGTGACATGTCTTA 

14 TAGTGTTTGCATGGGAGGAAG GTCCAGCAGATTCACATAATGG 

15 CCTGCTAGTGCTTCTCTTCTCC CATCTTCCTTCCTCCTCCTTTT 

16 GTTGGACAAGGCTACACACAAA TCACTCTCACTCTCCCAGATCA 

17 TAGTGGAATTTGGTCCCTGACT AAAAGAAGGTTGTATGGCAGGA 

18 ACAGGCTATTTGGAATTCAAGC GGGTCATAGTAGGCAGCTCAGT 

19 GAATTCATCCTCCATGTTCCAT ATCCTGTTGGCATATTTTGCTC 

20 CGTGTGAATGACATCAGCCTAT ATGCTGGACTGCAGAGTAAACA 

21 TGAGCAGCAGTGATTGCTTAAT TCAGGGAGTTGTAATGCAAAGA 

22 GTCTCCTGACAGTGCCATACAA AGAAGCAAACGTTGAAAAGAGG 

23 AAACCCACTCCTCCTCTTTCTC ACTCAGGGTCAAGCAATTAGGA 

24 TTATATCCCCAGAGAGCTTTGC GATGTGGCTTTTCCTGAGTAGG 

25 GACCCCTGTAATTTTGGAGAGA CTGAGCTCTGCCTCAATCAGTA 

26 GCATGGTAGGATTTGGACTCTC ATGGAACTCATTTCCTTGTGCT 

27 GCTATGAACCCGTACCTTTTTG GGGAAATATACAAGGCAAAGGA 

28 AGACAAAAAGAAGGTGCCAAAG AACTTGCGAAGTTACCAAAGGA 

29 AGCCACCATCTCATAATTCACA CCTAAACCTCTCATCCATCAGG 

30 AAATTTCAGAGGTCACCCCTTT GGAGCTTGGTGTCCTATCTCAC 

31 CCTCATCTCTCTGGTCTGAAGG ACCCTCAGCATTTTTATCCTCA 

32 GTTTGGCAGCTTCAGAAAAACT CTGGGCCTAGTTAAAAAGTAAAGG 

33 AAATTAGATCAATGCCCTGCAC GTGGTCAAATCTTCCTGGACTC 

34 TTGGTACAACGTGAGGTGAGAC TGATTGTCTGGCTGAAAACAAG 

35 TGCCTCTTTCAAACCAGAGATT TTGAAAGAATATGTCCCTGGTC 

36 ACTGTGAGGAAGCTCACAATCC TTGGCCACTATTCCCTTTCTTA 

37 TTCATCACTCCCTCTAACAGCA ATCTGGGCCATCGTATAAGAGA 

38 ACCTCAGACTTGGGTGTTCAGT GGTGATTCCCTGCTCAAATACA 

39 GGACAAAAAGGAACAGGTTCTG CCAACCTTCTTTCCTTCATCAC 

40 CAGGATCTGGACCTGTCCTTAC TCCATTCCAGTACAAGAAGCAC 

41 AGAGGTACTTGATTGCCTCTGG GGACTTCTGAGGCTTGAAGAAA 

42 CAAGCATGACTGGTAAAATTGG AAAAGCCACATAGTGCTACCAAG 
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F. Suppl. Table 6. Summary of qPCR and breakpoint sequencing validation 

studies  

 

(a) Quantitative PCR 

 

  
Agilent 24M aCGH 

CN gain CN normal CN loss Overall 

qPCR 

CN gain 594 61 27 682 

CN normal 19 593 17 629 

CN loss 15 25 530 570 

Overall 628 679 574 1881 

 

Correct call 1717 

Incorrect call 164 

Correct call rate 91.28% 
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F. Suppl. Table 6. Summary of qPCR and breakpoint sequencing validation 

studies  (b) Breakpoints sequencing 

Index Sample Chr True Start True End 
Size 

(bp) 

Start 

Difference 

(bp) 

End 

Difference 

(bp) 

1 AK6 1 84,484,593  84,488,463  3,871  126 15 

2 AK14 1 105,056,556  105,057,713  1,158  99 13 

3 NA18564 2 51,827,327  51,827,745  419  -38 46 

4 AK10 2 108,221,850  108,222,714  865  -108 -72 

5 AK8 3 26,425,973  26,427,303  1,331  -30 -64 

6 NA18968 3 78,862,108  78,862,409  302  -112 74 

7 AK18 3 133,190,943  133,196,075  5,133  119 -108 

8 NA18542 3 153,247,620  153,248,061  442  -170 -86 

9 NA18968 3 167,470,179  167,470,516  338  -71 154 

10 AK12 3 191,220,038  191,223,219  3,182  116 11 

11 AK18 4 30,623,047  30,624,073  1,027  -29 68 

12 NA18949 4 43,446,564  43,446,887  324  -133 -18 

13 NA18942 4 165,422,493  165,425,670  3,178  -24 6 

14 NA18997 5 97,427,318  97,428,518  1,201  -22 -80 

15 AK6 5 127,363,899  127,364,827  929  -33 -33 

16 AK6 5 162,794,351  162,795,870  1,520  9 27 

17 NA18542 5 170,062,496  170,063,968  1,473  -52 -33 

18 AK6 6 22,158,817  22,162,220  3,404  135 112 

19 NA18526 7 131,923,553  131,924,090  538  -23 -65 

20 NA18552 8 62,197,914  62,198,447  534  -24 20 

21 AK14 10 20,036,712  20,038,183  1,472  53 -13 

22 AK6 10 66,976,938  66,985,301  8,364  -57 -73 

23 AK10 10 107,940,672  107,941,586  915  289 -80 

24 NA18537 10 130,726,861  130,727,265  405  -76 -31 

25 AK4 12 49,259,982  49,261,778  1,797  271 -11 

26 AK18 13 38,832,183  38,833,482  1,300  206 51 

27 NA18942 13 108,159,746  108,160,439  694  78 -152 

28 AK10 14 21,951,506  21,952,100  595  99 48 

29 NA18542 14 38,074,269  38,074,779  511  -11 -13 

30 AK18 14 81,568,863  81,573,084  4,222  -25 136 

31 NA18973 14 84,366,861  84,371,909  5,049  -51 -3 

32 NA18592 15 37,531,682  37,532,152  471  10 10 

33 AK10 15 44,647,999  44,648,461  463  -178 -64 

34 AK10 15 99,159,012  99,159,896  885  154 -33 

35 NA18582 17 27,130,737  27,131,657  921  193 -237 

36 AK10 18 33,560,058  33,560,631  574  -19 -31 

37 AK4 18 45,948,975  45,952,385  3,411  0 130 

38 NA18564 18 48,716,563  48,717,029  467  -34 19 

39 NA18564 18 53,097,735  53,099,716  1,982  380 53 

40 NA18552 18 72,476,184  72,476,990  807  -73 -375 

41 NA18999 19 59,548,033  59,548,601  569  -170 -158 

42 AK8 21 28,634,908  28,635,998  1,091  -143 -26 
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G. Suppl. Table 7. List of 5,177 CNVE identified in 30 Asians 

 

See SuppTable7_5177CNVE_EthnicComparison.xls 

Depicted below is a preview for the part of this file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nature Genetics: doi:10.1038/ng.555



14 

 

H. Suppl. Table 8. List of OMIM genes in identified CNVs 

  

See SuppTable8_1843_OMIMgene.xls 

Depicted below is a preview for the part of this file. 
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I. Suppl. Table 9. List of microRNAs overlapping the personal CNVs identified 

in the study 

  See SuppTable9_miRNA.xls 

Depicted below is a preview for the part of this file. 
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J. Suppl. Table 10. List of fusion gene overlapping the personal CNVs 

identified in this study 

 

See SuppTable10_fusion_gene_list.xls 

Depicted below is a preview for the part of this file. 
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K. Suppl. Table 11. Modified PANTHER ontology analysis 

 

See SuppTable11_GeneOntology.xls 

Depicted below is a preview for the part of this file. 
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L. Suppl. Table 12. Examples of Genes showing different copy number status 

between this study and Conrad et al.1  

 

Gene Name 
Absolute CN status in 30 

Asians (this study) 
Absolute CN status in 90 Asians 

(Conrad et al.) 

RHD 
3/30 CN Loss 
2/30 CN Gain 

88/88 CN Gain 

SIRPB1 29/30 CN Loss 38/90 CN Gain 

CR1 29/30 CN Loss 88/90 CN Gain 

PGA3, PGA4, PGA5 28/30 CN Loss 0/90 CN Loss 

NOTCH2 30/30 CN Gain 0/90 CN Gain 

OR4S1 27/30 CN Gain 0/90 CN Gain 

FAM21A, FAM21B 30/30 CN Loss 0/89 CN Loss 

MUC6 30/30 CN Gain 1/87 CN Gain 

UPK3B 30/30 CN Loss 
31/77 CN Loss  
15/77 CN Gain 
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M. Suppl. Figure 1. Content of repetitive sequence for the Agilent 24M array set 

and the NimbleGen 42M array set. 

For the CNVs that are called by a single platform, we have used the respective 

probe distributions to filter out any CNVs that “cannot” be called by either of the 

platform due to lack of enough probes. 

X-axis is the density (frequency/total number of CNVEs). Y-axis is the coverage of 

the CNVEs with repeatmasker + Segmental duplications. 0.8 means that 80% of 

those CNVEs covered with CNVs. The dashed line represents 0.75 and the 

percentage close to that line is the percentage of CNVEs, 75% or more of which is 

covered with repeats or segmental duplications. 

 

           [NimbleGen 42M]                          [Agilent 24M] 
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N.Suppl. Figure 2. Modified Receiver Operator curve (ROC) analysis for filter 

training using data for AK1. 

We used "modified ROC curve", using PPV for the Y-axis and (1-relative sensitivity) 

in X-axis because this is more advantageous for training our filter conditions. The 

predominance of non-CNV areas in the genome results in artificially high values for 

specificity with a limited distribution. PPV was used for the Y-axis to better 

discriminate between the performances of different parameters. 
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O.Suppl. Figure 3. Read-depth information for 721 validated CNVs in AK1 using 

data for AK1 and NA10851 

Top panel, Read depth of AK1; Middle panel, Read depth of NA10851; Bottom panel, 

logarithm of read-depth ratio (AK1 read-depth/NA10851 read-depth) 

 

See SuppFig3_ReadDepth.pdf 

 

Depicted below is a preview for the part of this file 
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P.Suppl. Figure 4. Application of the absolute CNV calling algorithm and 

confirmation of results using read-depth sequence information 

In regions where the reference sample possesses two copies, absolute log2 ratio of 

the segment is identical to its relative log2 ratio.  

For complete loss regions of NA10851, test sample log2 ratios are generally very 

high and unstable. In other cases where the reference sample has a copy number 

loss (of 1 copy) or gain, array CGH will yield a positive call if the test sample has two 

copies. If the copy number of a given genomic segment in the test sample is identical 

to the corresponding genomic segment in NA10851, this CNV will not be detected by 

aCGH. 
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(a) An example of an overt CN gain 
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(b) An example of an overt CN loss 
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(c) An example of an obscure CN gain (removed by absolute calling algorithm) 
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(d) An example of an obscure CN gain (removed by absolute calling algorithm) 
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(e) An example of an obscure CN loss (removed by absolute calling algorithm) 
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(f) An example of a covert CN loss  
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(g) An example of a covert CN loss 
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(h) An example of a covert CN gain 

 

 

 

Nature Genetics: doi:10.1038/ng.555



31 

 

(i) An example of a covert CN gain 
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Q. Suppl. Figure 5. Copy number loss is the predominant type of human copy 

number variation. 

The proportion of CN loss and gain is disparate in overt calls (CNV segments in 

NA10851 CN normal regions) vs. obscure calls (CNV segments in NA10851 CNV 

regions). Applying the absolute calling algorithm to the obscure calls increases 

corrects the total ratio of CN loss significantly, which is more consistent with previous 

studies. 
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R.Suppl. Figure 6. Definition of CNVs, CNVR, and CNVE 

CNV calls with any overlap are combined into CNV regions, while CNV elements are 

composed of CNV calls that have more than 50% of their sequence in common.  
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S. Suppl. Figure 7. A Comparison between the Agilent 24M array platform and 

the NimbleGen 42M array platform using genomic DNA from AK1 

Left circle of the Venn diagram represents 722 CNV segments obtained from Agilent 

24M aCGH (Agilent CNVs) and right circle represents CNV segments found by the 

NimbleGen 42M platform (NimbleGen CNVs). Intersection of the two circles 

represents 450 Agilent CNVs which have at least one bp overlap with the NimbleGen 

CNVS. Outer circle on the right with blue color denotes 1,282 NimbleGen CNVs 

which do not overlap with Agilent CNVs at all (NimbleGen-specific CNVs). Dotted 

right circle represents NimbleGen-specific CNVs which are included in 105k 

genotyping array set. Right panel indicates that 1,282 NimbleGen-specific CNVS can 

be divided into three classes as described in the figure (See Supplementary Note 

for detailed explanation). 
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T. Suppl. Figure 8. Mendelian inconsistency of CNVs in a large Mongolian 

family using 180k probe aCGH array 

Investigation of Mendelian inconsistency in a Mongolian family, pre and post 

corrections for NA10851 copy number status. 6.42% of the meioses were Mendelian 

inconsistent using relative copy number data. 2.59% of the meioses were Mendelian 

inconsistent using absolute copy number data. An example of relative and absolute 

genotype calls for a CNV on chromosome 6 in this Mongolian family is shown on the 

right.  
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U. Suppl. Figure 9. Comparison of CNV calls made with the Agilent 24M aCGH 

platform and data from a 105k CNV genotyping platform by Genome Structural 

Variation Consortium (GSVC) 

CNV segments of NA12878 (a, HapMap sample with European origin) and NA19240 

(b, HapMap sample with African origin) obtained from Agilent 24M (in this study) and 

from 105k CNV genotyping array (GSVC1) were compared by one base pair overlap. 

Left circle of the Venn diagram represents CNV segments obtained from Agilent 24M 

aCGH in this study (Gemomic Medicine Institute(GMI) CNVs) and right circle 

represents CNV segments found by 105K platform by GSVC1 (GSVC CNVs). 

Intersection of two circles represents GMI CNVs which have at least one bp overlap 

with the GSVC CNVs. Right outer circle with red color denotes GSVC CNVs which 

do not overlap with GMI CNVs at all (See Supplementary Note for detailed 

explanation). 

 

 

 

 

 

 

 

 

 

 

Nature Genetics: doi:10.1038/ng.555



37 

 

V. Suppl. Figure 10.  The hierarchical selection of CNVRs which were included 

on the 180k probe aCGH array. CNV regions in higher tier (inner) data sets were 

given deferential preference with regards to size and breakpoints when overlapped 

with lower tier databases. 
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W. Suppl. Figure 11.  The distribution of probes within the targeted CNVRs in 

180k probe aCGH array.  For each CNVR, there are between 6 and 9 distinct 

probes.  Where possible, each probe corresponds to a single CNVR to ensure a 

clear-cut analysis of overlapping CNVRs. 
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X. Suppl. Note 

 

Platform difference 

The platform and design used to build the 24Million CNV identification array set in 

this study are comparable to, but different from, the 42Million NimbleGen array set 

used in a previous study by Conrad et al1. A large portion of the human genome 

consists of moderately and highly repetitive sequences, where identifying CNVs 

using hybridization methods is less feasible due to the lack of high quality 

oligonucleotide probes. To design a high performance CNV identification array set, 

we excluded low quality probes using a homology filter. As a consequence, most of 

the moderately and highly repetitive DNA sequences and some segmental 

duplications were not included on the 24Million Agilent CNV identification array set. 

This resulted in an effectively smaller portion of the genome being assayed for CNVs 

with a lower false positive rate. The median inter-probe distance (in the interrogated 

areas) for the 24Million Agilent array set was 40 bp, which is significantly smaller 

than that of the 42Million NimbleGen array platform at 50 bp. In contrast, the 

NimbleGen 42M array set includes a large number of probes in moderately – highly 

repetitive genomic regions (e.g., 43% of the probes are in highly repetitive regions), 

since their probes were designed to be evenly distributed throughout the entire 

human genome (Supplementary Figure 1). Hence, the Agilent 24Million array set 

platform interrogates a smaller portion of the genome at higher resolution, whereas 

the NimbleGen 42Million array set platform interrogates a larger section of the 

genome that includes a majority of repeats and segmental duplications, at a slightly 

lower resolution but with more uniformly distributed probes. 

 

To compare these two array sets, the genomic DNA from AK1 were analyzed on both 

platforms (Supplementary Figure 7). The Agilent 24M platform revealed 722 CNVs. 

For the NimbleGen 42M platform, the filter conditions used in Conrad et al. were 

applied (i.e., ≥10 consecutive probes with an average log2 ratio ≥ 0.1, and ≤ -

0.25 for CN gains and losses, respectively)1, resulting in 1,829 CNVs. 62.3% (n=450) 

of the CNVs identified in AK1 by the Agilent 24M platform overlapped ≥ 1 bp with 
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CNVs identified by the NimbleGen 42M platform. A substantial number of CNVs 

(n=1,282) were specific to the NimbleGen platform. Further analysis revealed that 

655 (51.1%) of these CNVs were in moderately – highly repetitive regions (hence no 

probes on the Agilent 24M array platform were available to interrogate these regions). 

Moreover, 424 (33.1%) of the CNVs showed had log2 ratios which did not meet the 

more stringent filter criteria established for the Agilent 24M platform (Supplementary 

Table 2). Consequently, only 203 NimbleGen-specific CNVs were relevant to this 

comparison. The genotyping array of Conrad et al.1 seems to have culled the CNV 

regions identified from their discovery studies, thereby targeting a selected subset 

and including fewer repetitive regions. Hence, only 30% (374/1282) of the 

NimbleGen 42M specific CNVs were included in the genotyping arrays, perhaps 

reflecting decreased confidence in the remainder of these putative CNV loci. 

 

To further determine how these two aCGH platforms compare in the ultimate CNV 

calls made, we compared the CNV calls made for NA12878 (CEU) and NA19240 

(YRI) using the Agilent 24M platform with those identified by Conrad et al.1 using a 

1bp overlap criteria (Supplementary Figure 9). Both of the results showed that ~60% 

(59.8% and 61.7%, respectively, (Figure 5)) of the CNVs identified by our Agilent 

24M platform were also identified with the 105k CNV genotyping platform in Conrad 

et al.1, and ~40% (40.2 % and 38.3%, respectively) of the CNVs discovered by the 

Agilent 24M platform in NA12878 and NA19240 were not captured by the 105k CNV 

genotyping platform. Taken together, these comparisons indicate that ~40% of the 

Agilent 24M CNV calls may be platform dependent and not captured by the 

NimbleGen 42M array set or 105k CNV genotyping platforms used in GSVC data1. 

 

Upon analysis of the CNVs for population stratification / differentiation, 1,630 of the 

5,177 CNVEs were also discovered in the CEU and YRI populations by Conrad et al 

(Figure 4a and Supplementary Table 7; 5,177-3,547=1,630). If these are considered 

to represent platform independent CNVs, we would expect approximately 1,100 

(1630 X 40%/60%) CNVs calls to be specific to the Agilent platform. However, we 

identified 3,547 novel CNV regions in our experiments, indicating that ~70% of these 

may be specific to Asian ethnicities. 
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Technologies for CNV detection; aCGH and massively parallel sequencing 

Recently, many genomic technologies have been used for detecting copy number 

variation in the human genome2-4. Among these, CGH microarrays have been used 

by the majority of comprehensive studies1,3,5-7. The resolution of aCGH platforms has 

continuously risen to a point where it is now possible to identify CNVs with sizes of 

only a few hundred bases.  

 

aCGH identifies CNVs in a test sample by comparison to a reference or control 

sample. Ideally, the control sample is expected to have a normal two copy value for 

every region across the genome. However, since no known human genomic sample 

actually has two copies of every segment of the human reference genome (hg18, 

assembly build 36.3), we have attempted to ascertain the absolute copy number 

value for each putative CNV region of interest in NA10851, a commonly used 

reference individual1,6-7. This information can then be used to convert the relative 

copy number information obtained from aCGH experiments to absolute copy 

numbers.  

 

Research has recently been performed in identifying CNVs through paired-end 

mapping and/or observing read depth (coverage) changes by massively parallel 

sequencing technology, but few have validated these findings in depth4,8-11. 

Resequencing methods do not require any reference sample for detecting CNVs. 

However, paired-end mapping methods have limitations for identifying smaller copy 

number losses or larger copy number gains, and some regions in the human 

genome show coverage drops or „spikes‟ (due to GC ratio or other uncertain 

reasons) that can result in many false positive and false negative CNV calls4,12. In a 

previous study, we reported a highly-confident set of CNVs in a Korean individual 

(AK1), using a combination of next generation sequencing and an earlier version of 

the 24M array platform12. However, only 19.1% of the CNVs detected by this high-

resolution aCGH platform could be confirmed by read-depth (sequence coverage). 

Such a low correlation has also been reported by other groups9,11. 

 

From these previous reports, we realized the importance of having sequence data of 
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NA10851, the control individual used in the present study as well as other large-

scale CNV studies. Since aCGH reports CNVs relative to NA10851, the log2 ratio of 

CNV calls are comparable with the sequence read-depth (coverage) ratio of a test 

sample and NA10851 rather than the read-depth change of the test sample alone. In 

this study, we compared the aCGH results of AK1 with the read-depth ratio of AK1 to 

NA10851. This resulted in a much higher correlation rate between aCGH and 

massively parallel sequencing up to ~90% (Details are explained in section below). 

This higher correlation rate enabled us to validate aCGH results as a whole using 

genome sequence data. By using this validation data, we adjusted filter conditions to 

minimize false positive aCGH CNV calls. 

 

Training the filtering criteria for calling CNV with aCGH data 

Array CGH reports a differing number of CNV calls under various filter conditions. 

The ADM-2 algorithm (Agilent Inc. CA) provides an average log2 ratio and 

corresponding p-value for each CNV segment.  

 

ADM-2 identified 17,890 unfiltered CNV segments in AK1‟s genome by aCGH. We 

then attempted to identify (by visual inspection) significant read-depth ratio (AK1 

read depth/NA10851 read depth) change for each putative CNV segment comparing 

these to the read depth ratio for their flanking genomic regions. Short reads were 

aligned by single base windows using a random alignment method to calculate 

genome-wide read-depth. A CNV segment identified by aCGH was considered to be 

confirmed when a significant change of read depth ratio was obtained for the CNV 

segment, compared to the flanking regions. Validation of a group of 300 randomly 

selected segments out of the total 17,890 provided initial filter conditions to minimize 

false positives (i.e., we empirically determined that each CNV segment should be 

called by ≥5 consecutive probes with a p-value of < 10-7 if |log2 ratio| ≥0.5 and a p-

value of <10-17 if 0.5> |log2 ratio| ≥0.2). Applying these criteria to the entire 17,890 

CNV segments identified by aCGH in AK1 resulted in 1,853 primary filtered CNV 

segments.  
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Read-depth ratio plots for all1,853 primary-filtered CNV segments were generated 

for further filter training. 721 (38.9%) CNV segments showed significant (by visual 

inspection) read-depth ratio changes which correlated with the aCGH log2 ratio and 

thus were thought to be final true positive CNVs in AK1 (Supplementary Figure 3). 

We set filter conditions by systematically adjusting the threshold log2 ratios and p-

values to minimize false positives while maximizing true positives. Due to the vast 

predominance of non-CNV areas in the genome, using „specificity‟ in the classical 

sense results in less discrimination between conditions with different performance. 

We therefore utilized positive predictive value (PPV) to efficiently resolve these 

differences. Read-depth ratio information for AK1 to NA10851 was used as the gold 

standard. Modified ROC curves were generated using PPV and relative sensitivity, 

and final filter conditions were set where both the PPV and relative sensitivity were 

substantially high (Supplementary Table 1; Supplementary Figure 2). Final filter 

conditions gave a positive predictive value and relative sensitivity for CNV detection 

of 0.840 and 0.845, respectively (Supplementary Table 2). 

 

In order to test our established filter conditions, they were applied to 8,241 raw 

autosomal CNV segments of AK2, identifying 695 filtered segments. The PPV was 

0.855, similar to that observed for AK1 (Supplementary Table 2).  

 

Absolute Call analysis method 

We are aware of examples where multiple copies of a gene exist in normal 

individuals. However, for the sake of simplicity, we will use the words „diploid‟ and 

„two copies‟ interchangeably when referring to „normal‟ copy number segments of a 

genome.  

 

While adjusting filter conditions using the AK1 and NA10851 sequence, we realized 

that only approximately half of the filtered AK1 CNV segments were overt CNV calls, 

or not associated with the CN gain or loss of NA10851 (Supplementary figure 2b). 

The other half of filtered AK1 CNV segments were ‟obscure calls‟, which were 

influenced by the copy number state of the corresponding DNA segment in NA10851. 

In other words, they were explained by CN gain or loss of NA10851 rather than in 
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AK1. For example, if the test sample has 2 copies (normal) of a given CNV region 

and NA10851 has 1 copy of the same genomic region, aCGH identifies this as a 

relative copy number gain in the test sample (obscure call, Supplementary Figure 

4d). This is because aCGH compares test and reference samples as described 

above. In addition, relative log2 ratios in the CNV segment can be 

under/overestimated and in extreme cases, CN loss of a test sample can be called 

as CN gain, or vice versa, if the reference sample simultaneously has homozygous 

deletion or higher CN gain, respectively, in the genomic region. (another example of 

an obscure call; Figure 2a). On the other hand, when the test and the reference 

sample have identical copy number states for a genomic region (e.g., each individual 

has a 1 copy of a genomic segment), aCGH fails to identify the region as a CNV and 

therefore this is referred to as a “covert” CNV (Supplementary Figure 4f-4i). Obscure 

and covert calls should be modified and reinstated, respectively, to identify the 

absolute copy number. In other words, we should identify the absolute copy number 

state for each CNV region in each person being studied, rather than the relative copy 

number state compared to a reference sample. 

 

By combining aCGH and next generation sequencing data for the reference sample, 

NA10851, we were able to design new methods to identify the absolute copy number 

for all regions in each individual tested. The application of this algorithm is not limited 

to only this study, but can be implemented to any aCGH experiment using NA10851 

as a reference. First, we identified CNV regions in NA10851 itself, using high 

resolution array CGH data for 30 Asian women (present study), together with 19 

CEU women, 20 YRI women and 1 polymorphic discovery resource individual1 as 

well as whole genome sequence data for NA10851 (present study). Since CNV 

regions in NA10851 are likely to cause obscure CNV calls in a test sample unless 

the test sample has identical CN status to NA10851, they are likely to be more 

frequently identified CNV regions in these studies. Hence, high frequency CNV 

regions in these studies are good candidates for CNVs in NA10851. CNV loci where 

≥ 10 out of 70 individuals showed copy number variations were investigated by 

sequence read-depth data of NA10851, using 30, 50, 100 or 1000 bp windows for 

CNVs with sizes of <1 kb, >1 kb, >100 kb and >1 Mb, respectively. Genomic regions 
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with substantially higher or lower coverage than their flanking regions were 

considered to have copy number gain or loss. Using these methods, we identified 

~550 putative CNV regions in NA10851. This combination of high resolution aCGH 

and massively parallel sequencing effectively identified validated CNVs in NA10851. 

 

Using the NA10851 CNV data, an absolute calling algorithm was developed. CNV 

regions in NA10851 were categorized into 0-copy regions, 1-copy regions, copy 

number gain regions and complex regions, where sequencing read-depth was close 

to 0, significantly lower than flanking regions, significantly higher than flanking 

regions, and not evenly distributed, respectively. Different categories of NA10851 

CNV regions required different strategies to calculate absolute calls. 

 

a. NA10851 2-copy region. 

If a CNV segment of the test sample does not overlap with any CNVs in NA10851, it 

is considered to be located in the 2 copy region of NA10851. Absolute log2 ratio of 

the segment is identical to its relative log2 ratio (Supplementary Figures 4a-4b) 

 

b. NA10851 0-copy region 

If a CNV segment of test sample overlaps with one of the complete loss regions in 

NA10851, its log2 ratio becomes unstable since the aCGH intensity of NA10851 is 

close to 0. Generally, regardless of real copy number status of the test sample, the 

log2 ratio becomes very large in value and very sensitive to the degree of 

background noise (Supplementary Figures 4c, 4f). Therefore, the alternative log2 

ratio was calculated by taking the ratio of region‟s signal intensity in the test sample 

over the average signal intensity of test sample, and substituted for relative log2 ratio. 

If the alternative absolute log2 ratio value met final filter criteria, it was considered as 

a positive CNV call. 

 


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c. NA10851 1-copy or CN gain region 

In these cases, if the sample copy number is two (or normal), array CGH will yield a 

positive call (Supplementary Figures 4d-e, 4g-4i). However, if the sample copy 

number is identical to that of NA10851, array CGH will miss the region 

(Supplementary Figures 4g-i). 

 

If a CNV segment of a sample overlaps one of these regions (obscure call), its log2 

ratio should be recalculated, since the copy number of the reference sample is not 

two (normal). Absolute log2 ratio is calculated using the following formula. 
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If the absolute log2 ratio value meets the final filtering criteria, it is included as a 

positive CNV call (with corrected log2 ratio). 

 

If none of the CNV segments of a sample overlaps one of these regions, the relative 

log2 ratio for the region is first calculated from normalized aCGH data using log2 

ratio of all the probes in the corresponding region. Absolute log2 ratio is then 

determined as below. 
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 If the absolute log2 ratio value meets the final filter criteria, it is included as a 

positive CNV call.  

 

d. NA10851 complex CNV region 

 For segments that overlap complex coverage regions, we convert the relative log2 

ratio into an absolute log2 ratio by the following equation  
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When we applied the absolute call algorithm to CNV segments from 30 Asian women, 

48% (10,558) of the 21,905 total relative CNV segments were candidates for 

modification, since they overlapped NA10851 CNV regions (Figure 2b). Out of 

10,558, 6,197 false positives were removed and 4,361 segments with 

under/overestimated log2 ratio had their log2 ratio corrected. In addition, 4,139 false 

negatives were identified. The copy number gain to loss ratio of the obscure calls 

was corrected from a predominance in gains to a predominance in losses using the 

absolute call algorithm, consistent with the ratios of gains and losses previously 

observed in other studies (Supplementary Figure 5). 

 

 

Gene ontology analysis 

 

Among 5,177 CNVEs, 383 and 1,059 were found to have CN gain and CN loss, 

respectively, in more than or equal to 10% of 30 Asians and were considered as 

Asian common CNVEs. When we counted genes in which coding sequences (CDS) 

overlapped with common CNVEs, 229 and 159 genes were found to be located in 

CN gain and CN loss regions, respectively. When we utilized PANTHER ontology 

(http://www.pantherdb.org) using “NCBI H. sapiens” option for classifying 229 genes 

with common CN gains, 184 genes were matched with 26 Biological Process terms 

in Panther database. We reclassified 26 terms into 8 major categories to simply 

visualize them in Figure 4b. For common CN losses, 132 of 159 genes were 

matched with 22 Biological Process terms, which were reclassified into 8 major 

categories in Figure 4b. Details of genes and gene ontology terms were listed in 

Supplementary Table 12.
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